« 寺家ふるさとの森散策 | トップページ | ひぐらしのなく頃に叫 »

確率計算 分析結果の解説(高ベース機用)

射幸性の抑制に伴い、スペックも単純なものが多くなり、従来計算していた、低ベース、高射幸性のスペックでは重要な分析結果も、重要で無くなってきており、高ベース、低射幸性のスペックに対応したものに簡素化しました。計算式は従来のものを残してますが、ブログに載せる記事を作成時に、表示項目を変更しております。

用語の解説

記事の内容をより理解するため下記の用語集を参照下さい。

一般的な用語:パチンコ用語集(業界用語を大幅に追加してあります)

確率分布の用語:確率計算0.2 確率分布の代表指標

1.基本性能

1.1 実質大当たり確率

1回の連チャンでの電サポ無での回転数を確率分母としたものです。
実質大当たり確率=(1-出玉無しで終わる確率)/(大当り確率分母+潜伏時の総回転数)

算出方法は
確率計算1.4 機種タイプ別の大当り確率計算
確率計算2.1 連チャン回数分布の基礎
確率計算1.3 引き戻しに関するパラメータ
確率計算2.1 連チャン回数分布の基礎
を参照して下さい。

1.2 実質継続確率・平均連チャン回数

平均連チャン回数の1回当たりの継続確率です。
潜伏時の当たりも連チャン回数に含めております。
実質継続確率=1-1/平均連チャン回数
平均連チャン回数=1/(1-実質継続確率)

平均連チャン回数=1-ヘソ継続確率+ヘソ継続確率/(1-電チュー継続確率)

標準偏差は連チャン回数分布の標準偏差を示してます。

算出方法は、
確率計算2.2 大当り状態遷移
確率計算2.3 総当たり連チャン回数確率分布
を参照して下さい。

1.3 連チャン平均差玉
削り無とした場合の1回の連チャンでの平を均差玉を示してます。
標準偏差は連チャン獲得差玉分布の標準偏差を示してます。
差玉一撃1万個以上の確率は連チャン獲得差玉分布の内、獲得差玉が1万個以上となる確率です。

算出方法は、
確率計算3.2 総ラウンド数分布の計算
確率計算3.3 獲得玉数の分布計算
を参照下さい。

2.総大当たり回数分布

2.1 遊技時間
休息時間、止め打ちの時間などを含まない打ち続けた時間の累計です。100の発射玉を1分として求めてます。

2.2 平均総回転数
遊技時間の内、平均大当り回数分の消化時間を除いた時間で発射した玉で大当り抽選できる回転数です。回転率は削り無等価ボーダーを使用してます。

2.3 総大当り回数分布の指標
平均総回転数に対応した回転数での総大当り回数分布の最頻値、平均値、標準偏差、歪度、突度を計算してます。

例えば総当り5回の場合、
・初当たり1回、5連チャン、
・初当たり2回、4-1、3-2、2-3、1-4連チャン、
・初当たり3回、3-1-1、2-2-1、2-1-2、1-2-2、1-3-1、1-1-3連チャン、
・初当たり4回、2-1-1-1、1-2-1-1、1-1-2-1、1-1-1-2連チャン、
・初当たり5回、1-1-1-1-1連チャン、
の全ての確率の和となります。

ヘソ継続確率をp1、電チュー継続確率をp2とすれば、4連チャンの確率はp1×p2×p2×(1-p2)となります。

潜伏のある場合はp1、p2、p3の3つの継続確率から求めることになりますが、計算が非常に複雑になるため、平均連チャン回数が3つの場合と同じとなるp1、p2を求めて近似計算してます。

具体的な計算方法は、
確率計算5.2 出玉有総大当り回数分布
を参照して下さい。

これらの計算とそれを使った立ち回りについては、下記を参照して下さい。
5.確率分布指標に基づいた立ち回り
立ち回り5.1 確率分布の代表指標値
立ち回り5.2 大きな値を持つ小頻度確率
立ち回り5.3 大当り回数分布グラフの形
立ち回り5.4 収支の分布グラフの形
立ち回り5.5 総回転数別の回転率と勝率

3.性能指標

3.1 削り無等価ボーダー
アタッカーの削り無、電サポ消化による出玉の増減無に貸250玉のボーダラインを示します。

算出方法は、
確率計算4.1 等価のボーダーラインの計算
を参照下さい。

3.2 1R当たりのトータル確率
トータル確率:1/(実質大当り確率/平均連チャン回数)
1R当たりのトータル確率=1/(トータル確率/1回の当たりの平均ラウンド数)

算出方法は、
確率計算4.2 トータル確率
を参照下さい。

3.3 電サポ率

回転数ベースの電サポ率は1回の連チャンにおける総回転数の内、電サポ作動状態で回転させる回転数の割合です。

発射玉ベースの電サポ率は1回の連チャンにおける総発射玉の内、電サポ作動状態で発射される玉の割合です。

3.4 玉持ち

ベースは発射玉に対する、ヘソ、その他入賞口、電チューでの払出し玉の割合です。表示はその比を100倍したものです。

玉持ちはその他入賞口無し、ヘソ払出し3個、電チュー払出し1個とした低ベース機のべ-スに対するベースの比です。

ボーダーライン/玉持ちはそのスペックの低ベース機に対応させた実質的なボーダーラインとなります。

3.5 90%収束回転数

収束範囲±5%、誤差範囲5%で出玉の収束に必要な回転数を示します。()はそれを大当り確率分母で割った初当たり回数として回転数を示してあります。誤差範囲10%とは、10回に1回の割合で観測値が±5%×平均大当り回数の区間に入らないことを意味してます。

尚、計算は中心極限定理を定理を使用し、誤差確率関数の正規分布関数を自由度N-1のt分布に近似して求めております。

確率計算4.3 収束回転数に算出方法を示してあります。

4.ボーダーライン

貸250玉/千円、貯玉利用2500玉/日の場合の、無効玉補正を行った時のボーダーラインを計算してます。尚、遊技時間は休息時間、止め打ちの時間などを含まない打ち続けた時間の累計です。

5.収支分布と勝率

最頻値は最も起こりえる収支です。分布が左右非対象のため最頻値<平均値となります。

標準偏差は収支の確率的バラツキを示すもので、
平均値±標準偏差区間に68.3%
平均値±2×標準偏差区間に95.4%
平均値±3×標準偏差区間に99.7%
が入ります。従って、標準偏差は射幸性を示す指標と考えられます。

6時間遊技で、平均値±25千円に入る割合が、
・50%となる標準偏差は37.1千円、
・80%となる標準偏差は19.5千円、
となります。従って、
標準偏差50千円は高射幸性(ミドル)、
標準偏差35千円は中射幸性(ライトミドル)、
標準偏差20千円は低射幸性(甘デジ)、
の機種と見做せます。

尚、初代牙狼の等価6時間の標準偏差は77千円です。65千円を超えれば超高射幸性機と言えます。

収支≃獲得総玉数*換金額-打ち込み玉総額
獲得総玉数=大当り回数*1回の当たりの平均獲得差玉
打ち込み玉総額=総回転数*250*玉単金/回転率
玉単金=(貸玉額-換金額)*exp(-大当り回数/(平均大当り回数*(1+1/平均初当たり回数)))+換金額

これより、
大当り回数=(収支+総回転数*250*貸玉額/回転率)/(1回の当たりの平均獲得差玉*換金額+(貸玉額-換金額)*250*(1-1/e)*(1+1/平均初当たり回数)/回転率)
となります。

従って、この関係より収支に対応した大当り回数が計算でき、その大当り回数の確率を求めれば収支に対応した確率が求まります。大当り回数の分布は、2.総大当たり回数分布に示してあります。

収支額以下の確率を求めるには、
0回から収支額に対応した大当り回数までの全ての確率の和
を求めます。

また、収支額以上の確率を求めるには、
1-(0回から収支額に対応した大当り回数までの全ての確率の和)
を求めます。

詳細については、
確率計算7.3 収支の分布計算
を参照して下さい。

« 寺家ふるさとの森散策 | トップページ | ひぐらしのなく頃に叫 »

コメント

コメントを書く

(ウェブ上には掲載しません)

« 寺家ふるさとの森散策 | トップページ | ひぐらしのなく頃に叫 »